Incorporating Multiple Knowledge Sources for Targeted Aspect-based Financial Sentiment Analysis

نویسندگان

چکیده

Combining symbolic and subsymbolic methods has become a promising strategy as research tasks in AI grow increasingly complicated require higher levels of understanding. Targeted Aspect-based Financial Sentiment Analysis (TABFSA) is an example such tasks, it involves processes like information extraction, specification, domain adaptation. However, little known about the design principles hybrid models leveraging external lexical knowledge. To fill this gap, we define anterior, parallel, posterior knowledge integration propose incorporating multiple sources strategically into fine-tuning process pre-trained transformer for TABFSA. Experiments on Opinion mining Question Answering challenge (FiQA) Task 1 SemEval 2017 5 datasets show that knowledge-enabled systematically improve upon their plain deep learning counterparts, some outperform state-of-the-art results reported terms aspect sentiment analysis error. We discover parallel most effective domain-specific more important according to our ablation analysis.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SentiHood: Targeted Aspect Based Sentiment Analysis Dataset for Urban Neighbourhoods

In this paper, we introduce the task of targeted aspect-based sentiment analysis. The goal is to extract fine-grained information with respect to entities mentioned in user comments. This work extends both aspect-based sentiment analysis that assumes a single entity per document and targeted sentiment analysis that assumes a single sentiment towards a target entity. In particular, we identify t...

متن کامل

Aspect Based Sentiment Analysis

Sentiment analysis aims to determine the evaluation of an author with respect to a particular topic and detecting the overall contextual polarity of a document. Sentiment analysis is increasingly viewed as a vital task both from an academic and a commercial standpoint. The majority of current approaches, however, attempt to detect the overall polarity of a sentence, paragraph, or text span, irr...

متن کامل

Aspect Based Sentiment Analysis Survey

Sentiment analysis or Opinion mining is becoming an important task both from academics and commercial standpoint. In recent years text mining has become most promising area for research. There is an exponential growth with respect to World Wide Web, Mobile Technologies, Internet usage and business on electronic commerce applications. Because of which web opinion sources like online shopping por...

متن کامل

Supervised Methods for Aspect-Based Sentiment Analysis

In this paper, we present our contribution in SemEval2014 ABSA task, some supervised methods for Aspect-Based Sentiment Analysis of restaurant and laptop reviews are proposed, implemented and evaluated. We focus on determining the aspect terms existing in each sentence, finding out their polarities, detecting the categories of the sentence and the polarity of each category. The evaluation resul...

متن کامل

Deep Learning for Aspect-Based Sentiment Analysis

Sentiment analysis is an important task in natural language understanding and has a wide range of real-world applications. The typical sentiment analysis focus on predicting the positive or negative polarity of the given sentence(s). This task works in the setting that the given text has only one aspect and polarity. A more general and complicated task would be to predict the aspects mentioned ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM transactions on management information systems

سال: 2023

ISSN: ['2158-656X', '2158-6578']

DOI: https://doi.org/10.1145/3580480